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Ana M. Gómez,* Eduardo Moreno, Serafı́n Valverde and J. Cristóbal López*
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Abstract—A novel approach, which features a stereoselective 6-exo-dig radical cyclization and a palladium-catalyzed allylic
amination, permits a six steps synthesis of aminocyclitol analogs from D-mannose. © 2002 Elsevier Science Ltd. All rights
reserved.

Carbocyclic polyols are important constituents of many
biologically active molecules. They display a variety of
biological effects, which range from cellular regulation
to the selective inhibition of enzymes, which play key
roles in living organisms.1 Accordingly, structures
which incorporate the cyclohexitol (polyhydroxylated
cyclohexanoids) or the aminocyclohexitol core have
raised widespread synthetic interest.2 In this context,
carbasugars,3 e.g. 1,4,5 and aminocarbasugars, e.g. 2, 3,
4, have proved to be potent glycomimics (Scheme 1).6

Validamine 2, valienamine 3 and valiolamine 4, were
first isolated by the chemical or microbial degradation
of validamycins,7 and some of their derivatives have
found commercial use. Although in aminocarbasugars
2–4, the amino group is located at C-1, many new types
of aminocarbasugars or aminocyclitols have been syn-
thesized in recent years and subjected to biological
evaluation.8

Our group has recently been interested in the synthesis
of carbasugars from monosaccharides,9,10 and in this
context we disclose herein a synthetic approach to the
preparation of a novel class of homologated N-substi-
tuted aminocarbasugar analogs 14. Our approach
(Scheme 2), which is not only confined to carbohydrate
derivatives, correlates retrosynthetically the amino-
methyl group in 5, with an allylic carbonate in a
methylenecyclohexane (e.g. 6). The latter could thus be
obtained by 6-exo-dig radical cyclization11 of a propar-
gylic carbonate (e.g. 7).

Accordingly, our synthetic route starts with the prepa-
ration of 11, in four steps from D-mannose (Scheme
3).9b Mannose-diacetonide, 8 (Scheme 2), prepared in
one single step from D-mannose by kinetic acetona-
tion,12 was treated with lithium trimethylsilylacetylide
to yield after work-up, alkyne 9 as a 2:1 epimeric
mixture at C-1 in 68% isolated yield. Chemoselective

Scheme 1. Carbasugars and aminocarbasugars.

Scheme 2. Synthesis of aminomethyl cyclohexanes from
acyclic precursors.
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protection of the propargylic hydroxyl group was
accomplished by use of ethyl chloroformate (55%).13

The hydroxyl group at C-5 in 10 was next treated with
phenylchlorothionoformate14 to furnish cyclization pre-
cursor 11 (76%).

Radical cyclization of 1115 takes place with excellent
stereoselectivity to afford carbonate 1216 (Scheme 4),
which upon treatment with palladium acetate and
triphenylphospine in acetonitrile, in the presence of a
primary or a secondary amine 13a–h, yields aminocycli-
tol analogs 14a–h17,18 (Table 1).

The results in Table 1 show the scope of the Pd-cata-
lyzed reaction. Pyrrolidine (Table 1, entry iv), pipe-
ridine (entry v), piperazines (entries vi and vii), and
morpholine (entry viii), as well as acyclic primary
amines (entries i, ii, iii) were used as nucleophiles. The
Pd-catalyzed amination, except in the case of (R)-(+)-�-
methylbenzylamine (13c, Table 1 entry iii), took place
in a few hours, giving moderate to good yields of allylic
amines 14.

In summary, we have reported an efficient strategy for
the synthesis of a novel class of N-substituted aminocy-
clitol analogs, 14, from D-mannose. The approach per-
mits the above-mentioned transformation to be carried
out in six steps, and benefits from a series of chemose-
lective transformations. D-Mannose diacetonide, 8,
leaves only the hemiacetal function exposed to reaction
and, upon reaction with the alkynyl nucleophile, grants

access to the 1,5-diol moiety in one step. The latter (e.g.
9) is chemoselectively protected at the prop-2-ynilic
hydroxy group (1-OH) as a carbonate, which plays a
dual role in our strategy: As a protecting group (for
1-OH), and as an activator of the double bond in the
forthcoming allylic amination. We have illustrated the
synthetic potential of this approach with the prepara-
tion of compounds 14a–h from D-mannose. Neverthe-
less, the use of different monosaccharide diacetonides,19

as well as the use of nucleophiles other than amines in
the Pd-catalyzed reaction20–22 could give rise to a large
variety of cyclitol analogs. Furthermore, the double
bond is susceptible to chemical modifications. Use of
the above strategy for the preparation of highly func-
tionalized cyclitols and derivatives thereof is underway
in our laboratory and will be described in due course.

Table 1. Preparation of N-substituted analogs of amino-
cyclitols 14, by palladium-catalyzed allylic amination of
allylic carbonate 12 with amines 13

Scheme 3. Synthesis of alkynyl carbonates 11 from D-man-
nose.

Scheme 4. Synthesis of aminocyclitol analogs, 14, from D-
mannose.
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